
Spark on Theta
Mike Ringenburg mikeri@cray.com
Principal Engineer, Analytics R&D, Cray Inc

Agenda

● Introduction to Spark
● History and Background
● Computation and Communication Model

● Spark on the XC40
● Installation and Configuration
● Local storage

● Spark on Theta/KNL
● Tips

● Questions?

Copyright 2017 Cray Inc.
2

In the beginning, there was Hadoop MapReduce…

● Simplified parallel programming model
● All computations broken into two parts

● Embarassingly parallel map phase: apply single operation to every key,value-pair,
produce new set of key,value-pairs

● Combining reduce phase: Group all values with identical key, performing combining
operation to get final value for key

● Can perform multiple iterations for computations that require
● I/O intensive

● Map writes to local storage. Data shuffled to reducer’s local storage, reduce reads.
● Additional I/O between iterations in multi-iteration algorithms (map reads from HDFS,

reduce writes to HDFS)
● Effective model for many data analytics tasks

● HDFS distributed file system (locality aware – move compute to data)
● YARN cluster resource manager

Copyright 2017 Cray Inc.
3

Example: K-Means Clustering with MapReduce

● Initially: Write out random cluster
centers

● Map:
● Read in cluster centers
● For each data point, compute nearest cluster

center and write <key: nearest cluster, value:
data point>

● Reduce:
● For each cluster center (key) compute

average of datapoints
● Write out this value as new cluster center

● Repeat until convergence (clusters
don’t change)

Copyright 2017 Cray Inc.
4

Assign
points to
clusters

Recompute
centers

Disk Disk

Repeat

MapReduce Problems

● Gated on IO bandwidth, possibly interconnect as well
● Must write and read between map and reduce phases
● Multiple iterations must write results in next time (e.g., new cluster

centers)
● No ability to persist reused data
● Must re-factor all computations as map then reduce

(and repeat?)

Copyright 2017 Cray Inc.
5

What is Spark?

● Newer (2014) analytics framework
● Originally from Berkeley AMPLab/BDAS stack, now Apache project
● Native APIs in Scala. Java, Python, and R APIs available as well.
● Many view as successor to Hadoop MapReduce. Compatible with

much of Hadoop Ecosystem.
● Aims to address some shortcomings of Hadoop

MapReduce
● More programming flexibility – not constrained to one map, one

reduce, write, repeat.
● Many operations can be pipelined into a single in-memory task
● Can "persist" intermediate data rather than regenerating every

stage

Copyright 2017 Cray Inc.
6

Spark Execution Model
● Master-slave parallelism
● Driver (master)

● Executes main
● Distributes work to executors

● Resilient Distributed Dataset (RDD)
● Spark's original data abstraction
● Partitioned amongst executors
● Fault-tolerant via lineage
● Dataframes/Datasets extend this abstraction

● Executors (slaves)
● Lazily execute tasks (local operations on

partitions of the RDD)
● Global all-to-all shuffles for data exchange
● Rely on local disks for spilling data that's too

large, and storing shuffle data

Driver
main()

…

Executor

Task

Task

Node 1

Executor

Task

Task

Executor

Task

Task

Node N

Executor

Task

Task

Node 0

= Java Virtual Machine Instance

= TCP Socket-based communication

Local disk(s)

Local disk(s)

Copyright 2017 Cray Inc.
7

Spark Communication
Model (Shuffles)

● All data exchanges
between executors
implemented via shuffle
● Senders (“mappers”) send

data to block managers; block
managers write to disks, tell
scheduler how much destined
for each reducer

● Barrier until all mappers
complete shuffle writes

● Receivers (“reducers”)
request data from block
managers that have data for
them; block managers read
and send

Map task
thread

Block
manager

Disk

Reduce
task

thread
TCP

Spark
Scheduler

Shuffle write

Shuffle read

Meta data

Copyright 2017 Cray Inc.
8

RDDs (and DataFrames/DataSets)

● RDDs are original data abstraction of Spark
● DataFrames add structure to RDDs: named columns
● DataSets add strong typing to columns of DataFrames (Scala and

Java only)
● Both build on the basic idea of RDDs

● DataFrames were originally called SchemaRDDs

● RDD data structure contains a description of the data,
partitioning, and computation, but not the actual data
… why?
● Lazy evaluation

Copyright 2017 Cray Inc.
9

Lazy Evaluation and DAGs

● Spark is lazily evaluated
● Spark operations are only executed when and if needed
● Needed operations: produce a result for driver, or produce a

parent of needed operation (recursive)
● Spark DAG (Directed Acyclic Graph)

● Calls to transformation APIs (operations that produce a new
RDD/DataFrame from one or more parents) just add a new node
to the DAG, indicating data dependencies (parents) and
transformation operation

● Action APIs (operations that return data) trigger execution of
necessary DAG elements

● Example shortly…

Copyright 2017 Cray Inc.
10

Tasks, Stages, and Pipelining

● If an RDD partition's dependencies are on a single other RDD
partition (or on co-partitioned data), the operations can be
pipelined into a single task
● Co-partitioned: all of the parent RDD partitions are co-located with child

RDD partitions that need them
● Pipelined: Operations can occur as soon as the local parent data is ready

(no synchronization)
● Task: A pipelined set of operations
● Stage: Execution of same task on all partitions

● Every stage ends with a shuffle, an output, or returning data back
to the driver.
● Global barrier between stages. All senders complete shuffle write before

receivers request data (shuffle read)

Copyright 2017 Cray Inc.
11

Spark Example: Word Count
val lines = sc.textFile("mytext")
val words = lines.flatMap (

line => line.split(" ")
)

val wordKV = words.map(s => (s, 1))
val groupedWords = wordKV.groupByKey()
val wordCounts = groupedWords.map(

t => (t._1, t._2.sum)
)

val counts = wordCounts.collect()

flatMap maps one
value to (possibly)

many, instead of one-
to-one like map

groupByKey combines all
key-value pairs with the

same key (k, v1), …,
(k,vn) into a single key-

value pair (k, (v1, …, vn)).

Collect returns all
elements to the driver

Load file

• Let's like at a simple example: computing the number of
times each word occurs

• Load a text file
• Split it into words
• Group same words together (all-to-all communication)
• Count each word

Copyright 2017 Cray Inc.
12

val lines = sc.textFile("mytext")
val words = lines.flatMap (

line => line.split(" ")
)

val wordKV = words.map(s => (s, 1))
val groupedWords = wordKV.groupByKey()
val wordCounts = groupedWords.map(

t => (t._1, t._2.sum)
)

val counts = wordCounts.collect()

The Spark DAG

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …

Count 1

Count 2

Count N

…

Copyright 2017 Cray Inc.
13

Collect

Execute!

Execution

"fox jumps
over"

"the brown
dog"

"the quick
brown"

Copyright 2017 Cray Inc.
14

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …

Count 1

Count 2

Count N

…

Collect

Execution

"fox jumps
over"

"the brown
dog"

(the, 1)
(brown, 1)
(dog, 1)

"the quick
brown"

(the, 1)
(quick, 1)
(brown, 1)

(fox, 1)
(jumps, 1)
(over, 1)

Copyright 2017 Cray Inc.
15

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …

Count 1

Count 2

Count N

…

Collect

Execution

"fox jumps
over"

"the brown
dog"

(the, 1)
(brown, 1)
(dog, 1)

"the quick
brown"

(the, 1)
(quick, 1)
(brown, 1)

(fox, 1)
(jumps, 1)
(over, 1)

(the, 1), (quick,
1), (brown, 1)

(fox, 1), (jumps,
1), (over, 1)

(the, 1), (brown,
1), (dog, 1)

Write shuffle data to local file system

Barrier

Copyright 2017 Cray Inc.
16

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …

Count 1

Count 2

Count N

…

Collect

Execution

"the quick
brown"

"fox jumps
over"

"the brown
dog"

(quick, (1))
(brown, (1, 1))

(fox, (1))
(jumps, (1))
(over, (1))

(the, (1, 1))
(dog, (1))

(the, 1), (quick,
1), (brown, 1)

(fox, 1), (jumps,
1), (over, 1)

(the, 1), (brown,
1), (dog, 1)

Fetch shuffle data from remote file systems

Copyright 2017 Cray Inc.
17

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …

Count 1

Count 2

Count N

…

Collect

Execution

"the quick
brown"

"fox jumps
over"

"the brown
dog"

(quick, 1)
(brown, 2)

(fox, 1)
(jumps, 1)
(over, 1)

(the, 2)
(dog, 1)

(the, 1), (quick,
1), (brown, 1)

(fox, 1), (jumps,
1), (over, 1)

(the, 1), (brown,
1), (dog, 1)

Copyright 2017 Cray Inc.
18

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …

Count 1

Count 2

Count N

…

Collect

Execution

"the quick
brown"

"fox jumps
over"

"the brown
dog"

(quick, 1)
(brown, 2)

(fox, 1)
(jumps, 1)
(over, 1)

(the, 2)
(dog, 1)

(the, 1), (quick,
1), (brown, 1)

(fox, 1), (jumps,
1), (over, 1)

(the, 1), (brown,
1), (dog, 1)

Copyright 2017 Cray Inc.
19

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …

Count 1

Count 2

Count N

…

Collect

Execution

"the quick
brown"

"fox jumps
over"

"the brown
dog"

(quick, 1)
(brown, 2)

(fox, 1)
(jumps, 1)
(over, 1)

(the, 2)
(dog, 1)

(the, 1), (quick,
1), (brown, 1)

(fox, 1), (jumps,
1), (over, 1)

(the, 1), (brown,
1), (dog, 1)

Copyright 2017 Cray Inc.
20

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …

Count 1

Count 2

Count N

…

Take(5)

Copyright 2017 Cray Inc.
21

Spark on Cray XC

Spark on XC: Setup options
● Cluster Compatibility Mode (CCM) option

● Set up and launch standalone Spark cluster in CCM mode, run interactively
from mom node, or submit batch script

● Exact details vary based on CLE version and workload manager
● An example recipe can be found in:

“Experiences Running and Optimizing the Berkeley Data Analytics Stack on Cray
Platforms”, Maschhoff and Ringenburg, CUG 2015

● Shifter option
● Shifter containerizer (think “Docker for XC”) developed at NERSC
● Acquire node allocation

● Run master image on one node
● Interactive image on another (or login)
● Worker images on rest

● Cray’s analytics on XC product (in beta testing) uses this approach
● Challenge: Lack of local storage for Spark shuffles and spills

Copyright 2017 Cray Inc.
22

Reminder: Spark Shuffle –
Standard Implementation

● Senders (“mappers”) send data
to block managers; block
managers write to local disks,
tell driver how much destined for
each reducer

● Barrier until all mappers
complete shuffle writes

● Receivers (“reducers”) request
data from block managers that
have data for them; block
managers read from local disk
and send

● Key assumption: large, fast local
block storage device(s) available
on executor nodes

Map task
thread

Block
manager

Disk

Reduce
task

thread

Driver
(scheduler,
block and

shuffle trackers)

Shuffle write

Shuffle read

Meta data

Node

Copyright 2017 Cray Inc.
23

Shuffle on XC – Version 1

● Problems: No local disk on standard XC40
● First try: Write to lustre instead

● Biggest Issue: Poor file access pattern for lustre (lots of small files, constant
opens/closes). Creates a major bottleneck on Lustre Metadata Server (MDS).

● Issue 2: Unnecessary extra traffic through network

Map task
thread

Block
managerLustre

Reduce
task

thread

Copyright 2017 Cray Inc.
24

Shuffle on XC – Version 2

● Second try: Write to RAMDisk
● Much faster, but …
● Issues: Limited to lessor of: 50% of node DRAM or unused DRAM; Fills up quickly;

Spark RAMDisk "flakiness"; takes away memory that could otherwise be allocated
to Spark

● Spark behaves unpredictably when it's local scratch space fills up (failures not
always simple to diagnose)

Map task
thread

Block
managerRAMDisk

Reduce
task

thread

Copyright 2017 Cray Inc.
25

Shuffle on XC – Version 3

● Third try: Write to RAMDisk and Lustre
● Set local directories to RAMdisk and lustre (can be list)
● Initially fast and keeps working when RAMDisk full
● Issues: Slow once RAMDisk fills; Round robin between directories (no bias

towards faster RAM)

Map task
thread

Block
managerRAMDisk

Reduce
task

thread
TCP

Lustre

Copyright 2017 Cray Inc.
26

Shuffle on XC – Version 3

● Third try: Write to RAMDisk and Lustre
● Set local directories to RAMdisk and lustre (can be list)
● Initially fast and keeps working when RAMDisk full
● Issues: Slow once RAMDisk fills; Round robin between directories (no bias

towards faster RAM), but can specify multiple RAM directories

Map task
thread

Block
managerRAMDisk

Reduce
task

thread
TCP

Lustre

Copyright 2017 Cray Inc.
27

Shuffle on XC – with Shifter PerNodeCache

● Shifter implementation: Per-node loopback file system
● NERSC’s Shifter containerization (in Cray CLE6) provides optional loopback-mounted per-node temporary

filesystem
● Local to each node – fully cacheable
● Backed by a single sparse file on Lustre – greatly reduced MDS load, plenty of capacity, doesn’t waste space
● Performance comparable to RAMDisk, without capacity constraints (Chaimov et al, CUG ‘16)

● Cray’s Analytics on XC project (in beta) will ship as a Shifter image, and use this approach

Map task
thread

Block
manager

Sparse,
cacheable

“local”
filesystem

Reduce
task

thread
TCP

Copyright 2017 Cray Inc.
28

Lustre
File

Other Spark Configurations

● Many config parameters … some of the more relevant:
● spark.shuffle.compress: Defaults to true. Controls whether

shuffle data is compressed. In many cases with fast interconnect,
compression and decompression overhead can cost more than
the transmission time savings. However, can still be helpful if
limited shuffle scratch space.

● spark.locality.wait: Defaults to 3 (seconds). How long to wait for
available resources on a node with data locality before trying to
execute tasks on another node. Worth playing around with -
decrease if seeing a lot of idle executors. Increase if seeing poor
locality. (Can check both in history server.) Do not set to 0!

Copyright 2017 Cray Inc.
29

Spark Performance on XC: HiBench

Copyright 2017 Cray Inc.
30

0	
20	
40	
60	
80	
100	
120	

Sca
laK
me
an
s	

Sca
laP
ag
era
nk
	

Sca
laS
lee
p	

Sca
laS
ort
	

Sca
laT
era
so
rt	

Sca
laW

ord
co
un

Sca
laB
ay
es	

El
ap

se
d	
?m

e	
(s
)	

Performance	of	HiBench	on	XC40	vs	Urika-XA	
Huge	Scale:	48	nodes,	12	cores/node		

XC40		

Urika-XA		

● Intel HiBench
● Originally MapReduce, Spark

added in version 4
● Compared performance

with Urika XA system
● XA: FDR Infiniband, XC40:

Aries
● Both: 32 core Haswell nodes
● XA: 128 GB/node, XC40: 256

GB/node (problems fit in
memory on both)

● Similar performace on
Kmeans, PageRank, Sleep

● XC40 faster for Sort,
TeraSort, Wordcount,
Bayes

Spark Performance on XC: GraphX

Copyright 2017 Cray Inc.
31

● GraphX PageRank
● 20 iterations on

Twitter dataset
● Interconnect

sensitive
● GX has slightly

higher latency and
lower peak TCP
bandwidth than XC
due to buffer chip

693

391

183
137

0

100

200

300

400

500

600

700

800

Amazon EC2 (10 GbE) Urika XA (FDR IB) Urika GX (Aries +
Buffer)

XC 30 (Aries)

Se
co

nd
s

Spark GraphX PageRank

Copyright 2017 Cray Inc.
32

Spark on Theta

Shuffle on XC – Theta’s SSDs

Copyright 2017 Cray Inc.
33

Map task
thread

Block
managerSSD

Reduce
task

thread

● Another option, unique to Theta
● Theta system provides a 128GB SSD on every node, available for applications
● Could be used as Spark local storage – this is what we do on Urika GX

● Shown to be fast on Urika-GX
● Slightly larger than max RAMdisk (128 vs 192/2=96), and no contention, but still a

bit smaller than typically use.

Shuffle on XC – Theta’s SSDs

Copyright 2017 Cray Inc.
34

Map task
thread

Block
managerSSD

Reduce
task

thread

● Another option, unique to Theta
● Theta system provides a 128GB SSD on every node, available for applications
● Could be used as Spark local storage – this is what we do on Urika GX

● Shown to be fast on Urika-GX
● Slightly larger than max RAMdisk (128 vs 192/2=96), and no contention, but still a

bit smaller than typically use. Could be used in combination with RAMDisk, or
Loopback w/ Shifter?

Sparse,
cacheable

“local”
filesystem

Lustre
File

Spark on KNL

● Cray and Intel have recently started a collaboration to
investigate and improve Spark on KNL performance
● Java and Spark currently run
● Performance vs Skylake varies from 20% slower to >4x slower
● “Typical” benchmarks at larger sizes ~3x slower than a dual-

socket Skylake node
● Still early … just starting to benchmark and profile.

● Looking at issues, profiling, attempting to identify causes and
potential solutions.

Copyright 2017 Cray Inc.
35

Early findings and tips

● Lots of skinny executors work better than fewer fatter executors
● On Xeon-based nodes this is not necessarily the case – fat often works

nearly as well or occasionally better
● On KNL, though, often find best results with 1-2 cores per executor

● Make sure to adjust executor memory appropriately – all about memory/core
● E.g., 64 executors with 1 core and 2GB each, rather than 1 executor with 64 cores

and 128 GB
● Skinny executors have better memory locality
● Skinny executors also have less JVM overhead
● JVM has issues scaling to many threads, e.g., https://issues.scala-

lang.org/browse/SI-9823 (cache thrashing with isInstanceOf)
● Hyperthreading generally not helpful for Spark (on either Xeon or

Xeon Phi)

Copyright 2017 Cray Inc.
36

Early findings and tips

● Limit GC parallelism from JVM
● E.g., -XX:+UseParallelOldGC -XX:ParallelGCThreads=<N>,

where N ≤ available threads/# executors
● Especially important with lots of skinny JVMs

● Otherwise each JVM will try to grab 5/8 total threads

● MCDRAM configured as cache works best with Spark
● Seeing ~43% of accesses coming from MCDRAM, ~11% directly

from DDR
● Currently no ability in JVM to take advantage of MCDRAM in flat

mode

Copyright 2017 Cray Inc.
37

Current Performance Gap

● Single node performance
● KNL node: 192 GB DDR4, 16 GB MCDRAM, 2TB P3700 PCIe

SSD
● Skylake node: Dual-socket node, 384GB DDR4, 2TB P3700

PCIe SSD

Copyright 2017 Cray Inc.
38

Benchmark KNL SKX-EP KNL/SKX

Spark terasort large (3.2 GB) 136 sec 34 sec 4x
Spark terasort huge (32 GB) 343 sec 94 sec 3.6x
Spark terasort gigantic (320 GB) 2570 sec 800 sec 3.2x

Summary

● Spark runs well on XC systems
● Key is to intelligently configure local scratch directories
● Analytics on XC project, including Spark, in Beta testing

● Also planning to include Intel BigDL: Optimized Deep Learning in
Spark

● Cray and Intel collaborating to understand and improve
performance of Spark on KNL/Xeon Phi systems
● Initial tips:

● Skinny executors
● Limit GC threads

● On roadmap for future versions of Analytics on XC

Copyright 2017 Cray Inc.
39

Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property
rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and
other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal
codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray
Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual
performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, and
URIKA. The following are trademarks of Cray Inc.: APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,
ECOPHLEX, LIBSCI, NODEKARE, REVEAL, THREADSTORM. The following system family marks, and associated model number
marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense
from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are
the property of their respective owners.

Copyright 2017 Cray Inc.
40

Copyright 2017 Cray Inc.
41

Questions?

